Math 201 — Fall 2011–12 Calculus and Analytic Geometry III, all sections Final Exam, January 21 — Duration: 2 hours 15 minutes

GRADES:

,

Problem	1 (/15)	2 (/15)	3 (/15)	4 (/11)	5 (/14)	6 (/15)	7 (/15)
Part a							
Part b							
Part c							
Total							

GRAND TOTAL:

GRADE:

YOUR NAME:

YOUR AUB ID#:

PLEASE CIRCLE YOUR SECTION:

Section 1	Section 2	Section 3	Section 4
MWF 3, Kobeissi	MWF 3, Kobeissi	MWF 3, Kobeissi	MWF 3, Kobeissi
Recitation F 11	Recitation F 5	Recitation F 4	Recitation F 10
Section 5	Section 6	Section 7	Section 8
MWF 10, Abi-Khuzam	MWF 10, Abi-Khuzam	MWF 10, Abi-Khuzam	MWF 10, Abi-Khuzam
Recitation T 11	Recitation T 3:30	Recitation T 5	Recitation T 2
Section 9	Section 10	Section 11	Section 12
MWF 11, Brock	MWF 11, Brock	MWF 11, Brock	MWF 11, Brock
Recitation T 12:30	Recitation T 2	Recitation T 11	Recitation T 3:30
Section 13	Section 14	Section 15	Section 16
MWF 2, Nahlus	MWF 2, Nahlus	MWF 2, Nahlus	MWF 2, Nahlus
Recitation Th 11	Recitation Th 3:30	Recitation Th 8	Recitation Th 5
Section 17	Section 18	Section 19	Section 20
MWF 8, Makdisi	MWF 8, Makdisi	MWF 8, Makdisi	MWF 8, Makdisi
Recitation F 2	Recitation Th 8	Recitation Th 2	Recitation Th 3:30
Section 21 MWF 1, Raji Recitation M 8	Section 22 MWF 1, Raji Recitation M 9	Section 23 MWF 1, Raji Recitation M 4	
Section 24	Section 25	Section 26	

MWF 10, Egeileh Recitation F 11 Section 25 MWF 10, Egeileh Recitation F 2 Section 26 MWF 10, Egeileh Recitation F 3 1. (5 pts each part,15 pts total)

٠

(a) Use the Sandwich theorem to find the following limit

$$\lim_{n\to\infty}\frac{\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}}{3\ln\sqrt{n}}.$$

(b) (UNRELATED) Find, with justification, all values of p for which the following series is convergent

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \sin(\frac{1}{\sqrt{n}}) \right)^p.$$

(c) (UNRELATED) Compute the n^{th} partial sum S_n of the following series, and use it to find, according to the values of c, the sum of the series

2

$$\sum_{k=0}^{\infty} \frac{c^{k+1} - c^k}{(c^k + 3)(c^{k+1} + 3)}, \qquad c > 0.$$

2. (5 pts each part, 15 pts total)

(a) Consider the function

•

$$f(x,y) = \frac{xy^2}{3\sin^2 x + y^2}, \text{ if } (x,y) \neq (0,0)$$

Prove that f(0,0) may be defined in such a way that f becomes continuous at (0,0).

(b) If in part (a) f(0,0) has been defined correctly, prove that f is not differentiable at (0,0). For this part, you may use without proof that $f_x(0,0) = f_y(0,0) = 0$.

continued...

14

(c) (UNRELATED) By about how much will $h(x, y) = \ln(x^2 + y^2 + z^2)$ change if the point P(x, y, z) moves from $P_0(1, 1, -1)$ a distance of ds = 0.1 unit in the direction of the vector 3i + 6j - 2k?

z,

٠

3. (5 pts each part, 15 pts total)(a) Sketch the region of integration and evaluate the double integral

$$\int_{1}^{15} \int_{0}^{1/y} y e^{xy} dx dy.$$

(b) Evaluate the double integral

$$\int_0^{32} \int_{x^{1/5}}^2 \frac{dydx}{y^6+1}.$$

(c) Evaluate the integral

•

$$\int_0^\infty e^{-x^2} dx.$$

.

4. (11 pts total: 5 pts for (a), 3 pts for (b), 3 pts for (c)) (a) Find the volume of the solid bounded below by the surface z = 1, and above by the surface $x^2 + y^2 + z^2 = 4$.

(b) If the density is $\delta(x, y, z) = z$, set up but do not evaluate, a triple integral with dV = dxdydz, giving the mass of the solid in part (a).

(c) Set up but do not evaluate the integral in part (b) in spherical coordinates.

•

5. (14 pts total: 5 pts for (a), 5 pts for (b), 4 pts for (c)) (a) Let $f(x) = \frac{1}{x+3}$. Find the Taylor series expansion of f about a = 1, (i.e., centered at a = 1), and use it to find $f^{(n)}(1)$.

.

(b) (UNRELATED) Find the maximum and minimum values of the function $f(x, y) = x^2 + y^2 + x - y$ on the curve $x^2 + y^2 = 2$.

(c) (UNRELATED) Use the transformation x = au, y = bv, z = cw to find the volume of the region $R = \{(x, y, z) : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}$. Here a, b, c are positive constants.

ž

6. (5 pts each part, total 15 pts) Consider the region $D = \{(x, y) : x^2 + y^2 \le 4, y \ge -1\}$, and the vector field $\mathbf{F}(x, y) = -y\mathbf{i} + x\mathbf{j}$ in D.

.

(a) Using appropriate parametrizations of the boundary, evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the positively oriented boundary of D.

(b) Use Green's Theorem to evaluate the integral in part (a).

(c) Let $G(x, y) = \frac{-y}{x^2+y^2}i + \frac{x}{x^2+y^2}j$ be another vector field defined away from (0,0). Evaluate $\int_C \mathbf{G} \cdot d\mathbf{r}$ on the same curve C as before.

5

7. (5 pts each part, 15 pts total) Consider the vector field

×

$$\mathbf{F}(x, y, z) = \left(\frac{y}{1 + x^2 y^2}\right)\mathbf{i} + \left(\frac{x}{1 + x^2 y^2} + e^z \cos y\right)\mathbf{j} + (e^z \sin y)\mathbf{k},$$

and let S be any curve in the first octant, starting at $A(\frac{1}{\pi}, \pi, 1)$ and ending at $B(\frac{2}{\pi}, \frac{\pi}{2}, \ln 3)$.

(a) Is F a conservative field in the first octant $\{(x, y, z) : x, y, z > 0\}$? Prove your answer.

(b) Evaluate the line integral $\int_{S} \mathbf{F} \cdot d\mathbf{r}$.

(c) (UNRELATED) Suppose f(x, y) satisfies $f_{xx} + f_{yy} = 0$ in a domain D with positively oriented boundary C. Prove the following identity:

,

 $\int_C f \nabla f \cdot \mathbf{n} ds = \int \int_D |\nabla f|^2 dA.$