Math 201 — Fall 2011-12

Calculus and Analytic Geometry III, all sections

Final Exam, January 21 — Duration: 2 hours 15 minutes
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1. (5 pts each part,15 pts total)
(a) Use the Sandwich theorem to find the following limit
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(b) {UNRELATED) Find, with justification, all values of p for which the
following series is convergent
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continued...



(c) (UNRELATED) Compute the n'* partial sum S, of the following
series, and use it to find, according to the values of ¢, the sum of the series
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2. (5 pts each part, 15 pts total)
(a) Consider the function
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Prove that f(0,0) may be defined in such a way that f becomes continuous
at (0,0).

(b) If in part (a) f(0,0) has been defined correctly, prove that f is
not differentiable at (0,0). For this part, you may use without proof that

J=(0,0) = fy(0,0) = 0.

continued...



(¢c) (UNRELATED) By about how much will A(z,y) = In(z? + 32 + 2?)
change if the point P(z,y, z) moves from Fy(1,1,—1) a distance of ds = 0.1
unit in the direction of the vector 3i + 6j — 2k?



3. (5 pts each part, 15 pts total)
(a) Sketch the region of integration and evaluate the double integral

15 rlfy
f [ yeVdzdy,
1 0

(b) Evaiuate the double integral
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(c:) Evaluate the integral
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4. (11 pts total: 5 pts for (a), 3 pts for (b), 3 pts for (c))
(a) Find the volume of the solid bounded below by the surface z = 1, and
above by the surface 22 + % + 2% = 4.

(b) If the density is 6(z,y,2) = z, set up but do not evaluate, a triple
integral with dV = dzdydz, giving the mass of the solid in part (a).

continued...



(c) Set up but do not evaluate the integral in part (b) in spherical coor-
dinates,




5. (14 pts total: 5 pts for (a), 5 pts for (b), 4 pts for (c))
(a) Let f(z) = . Find the Taylor series expansion of f about a =
1,(i.e., centered at a = 1), and use it to find f™(1).

(b) (UNRELATED) Find the maximum and minimum values of the func-
tion f(z,y) = 2% +y? + z — y on the curve z% + y% = 2.

continued...



(¢) (UNRELATED) Use the transformation z = au,y = bv,2 = cw to
find the volume of the region R = {(z,y,2): f;- - E- + 5 < 1}. Here a,b,¢c
are positive constants.




6. (5 pts each part, total 15 pts) Consider the region D = {(z,y) :
r? +y? < 4,y > —1}, and the vector field F(z,y) = —yi+ zj in D.

(a) Using appropriate parametrizations of the boundary, evaluate the line
integral fc' F - dr where C is the positively oriented boundary of D.

(b) Use Green's Theorem to evaluate the integral in part (a).

continued...



(c) Let G(z,y) = i+ sr57] be another vector field defined away
from (0,0). Evaluate f, G - dr on the same curve C as before.




7. (5 pts each part, 15 pts total) Consider the vector field

F(z,9,2) = (e )i+ (

T o +efcosy)j + (e siny)k,

z
1+ z%2
and let S be any curve in the first octant, starting at A(2,7,1) and ending
at B(%,Z,In3).
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(a) Is F' a conservative field in the first octant {(z,y,2) : z,y,2 > 0}?
Prove your answer.

(b) Evaluate the line integral [¢ F - dr.

continued...



(c) (UNRELATED) Suppose f(z,y) satisfies fzz + fiy = 0 in a domain
D with positively oriented boundary C. Prove the following identity:

fc fVf-nds= / /D |V fiPdA.




